Lifting $D$-modules from positive to zero characteristic

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lifting Witt Subgroups to Characteristic Zero

Let k be a perfect field of characteristic p > 0. Using Dieudonné modules, we describe the exact conditions under which a Witt subgroup, i.e., a finite subgroup scheme of Wn, lifts to the ring of Witt Vectors W (k).

متن کامل

D-modules in positive characteristic and Frobenius descent

Let R = k[x1, . . . , xd] be the ring of polynomials in a finite number of variables over a field k and let DR|k be the corresponding ring of k-linear differential operators. The theory of DR|k-modules has been successfully applied in Commutative Algebra in order to study local cohomology modules due to the fact that, despite not being finitely generated as R-modules, they are so when considere...

متن کامل

Lifting an automorphism of a curve to characteristic zero

Question. Given a connected curve C 0 , proper and smooth over a field K of characteristic p, given a subgroup H ⊂ Aut(C 0); can we lift the pair (C 0 , H) to characteristic zero? ((We shall see that the answer is " NO " in general; for cyclic groups we conjecture that the answer is " YES " .)) Example (1) (Roquette). Consider the normalization of the completion of the curve given by the affine...

متن کامل

LIFTING MODULES WITH RESPECT TO A PRERADICAL

Let $M$ be a right module over a ring $R$, $tau_M$ a preradical on $sigma[M]$, and$Ninsigma[M]$. In this note we show that if $N_1, N_2in sigma[M]$ are two$tau_M$-lifting modules such that $N_i$ is $N_j$-projective ($i,j=1,2$), then $N=N_1oplusN_2$ is $tau_M$-lifting. We investigate when homomorphic image of a $tau_M$-lifting moduleis $tau_M$-lifting.

متن کامل

lifting modules with respect to a preradical

let $m$ be a right module over a ring $r$, $tau_m$ a preradical on $sigma[m]$, and$ninsigma[m]$. in this note we show that if $n_1, n_2in sigma[m]$ are two$tau_m$-lifting modules such that $n_i$ is $n_j$-projective ($i,j=1,2$), then $n=n_1oplusn_2$ is $tau_m$-lifting. we investigate when homomorphic image of a $tau_m$-lifting moduleis $tau_m$-lifting.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin de la Société mathématique de France

سال: 2011

ISSN: 0037-9484,2102-622X

DOI: 10.24033/bsmf.2606